Change of variables

Let $F: D \subset \mathbb{R}^2 \to \mathbb{R}^2$ be a C^2 mapping defined in D given by u = u(x, y), v = v(x, y). Let $R \subset D$ be a subregion with smooth boundary $\partial R \subset D$. Then

$$\iint_{R} \left(u_{x}v_{y} - u_{y}v_{x} \right) dxdy = \int_{\Gamma} u dv \,,$$

where $\Gamma = F(\partial R)$. The proof is based on integration by parts of the left hand side.